D-SRGAN: DEM Super-Resolution with Generative Adversarial Networks
نویسندگان
چکیده
Digital elevation model (DEM) is a critical data source for variety of applications such as road extraction, hydrological modeling, flood mapping, and many geospatial studies. The usage high-resolution DEMs inputs in application areas improves the overall reliability accuracy raw dataset. goal this study to develop machine learning that increases spatial resolution DEM without additional information. In paper, GAN based (D-SRGAN), inspired by single image super-resolution methods, developed evaluated increase DEMs. experiment results show D-SRGAN produces promising while constructing 3 feet from 50 low-resolution It outperforms common statistical interpolation methods neural network algorithms.This shows it possible use power artificial networks also demonstrates approaches can be applied super-resolution.
منابع مشابه
Simultaneously Color-Depth Super-Resolution with Conditional Generative Adversarial Network
Recently, Generative Adversarial Network (GAN) has been found wide applications in style transfer, image-to-image translation and image super-resolution. In this paper, a colordepth conditional GAN is proposed to concurrently resolve the problems of depth super-resolution and color super-resolution in 3D videos. Firstly, given the low-resolution depth image and low-resolution color image, a gen...
متن کاملHigh-Resolution Deep Convolutional Generative Adversarial Networks
Generative Adversarial Networks (GANs) [7] convergence in a high-resolution setting with a computational constrain of GPU memory capacity (from 12GB to 24 GB) has been beset with difficulty due to the known lack of convergence rate stability. In order to boost network convergence of DCGAN (Deep Convolutional Generative Adversarial Networks) [14] and achieve good-looking high-resolution results ...
متن کاملAutomatic Colorization of Grayscale Images Using Generative Adversarial Networks
Automatic colorization of gray scale images poses a unique challenge in Information Retrieval. The goal of this field is to colorize images which have lost some color channels (such as the RGB channels or the AB channels in the LAB color space) while only having the brightness channel available, which is usually the case in a vast array of old photos and portraits. Having the ability to coloriz...
متن کاملSRPGAN: Perceptual Generative Adversarial Network for Single Image Super Resolution
Single image super resolution (SISR) is to reconstruct a high resolution image from a single low resolution image. The SISR task has been a very attractive research topic over the last two decades. In recent years, convolutional neural network (CNN) based models have achieved great performance on SISR task. Despite the breakthroughs achieved by using CNN models, there are still some problems re...
متن کاملConstruction with Generative Adversarial Networks
Three-dimensional (3D) Reconstruction is a vital and challenging research topic in advanced computer graphics and computer vision due to the intrinsic complexity and computation cost. Existing methods often produce holes, distortions and obscure parts in the reconstructed 3D models which are not adequate for real usage. The focus of this paper is to achieve high quality 3D reconstruction perfor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SN computer science
سال: 2021
ISSN: ['2661-8907', '2662-995X']
DOI: https://doi.org/10.1007/s42979-020-00442-2